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1. INTRODUCTION

We are concerned with the approximation problem

Minimize Ilf - gil,
geM

where M is a finite dimensional linear subspace of qa, b], the space of
real valued continuous functions defined on the finite interval [a, b], and
where II '11 denotes the supremum norm. For eachfE qa, b] we let

VAM) = {h : Ilf - h II ~ Ilf - gil for all gEM}.

(C)

It is well known that Vf(M) is a singleton for eachfE qa, b], if and only if,
M has the Chebyshev property:

gEM, g =1= 0 implies that g has at most

n - 1 distinct zeroes in [a, b], where

n = dimension of M.

It is also well known that if M has property (C) then for each f E qa, b]

t The research of the second author was supported in part by the National Science
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the error function e = f - g, where {g} = Vf(M), equioscillates; i.e.,
there exist n + 1 distinct points a ~ Xl < ... < Xn+1 ~ b such that

I e(Xi) I = II ell, i = 1,... , n + 1, and e(Xi) e(xi+1) ~ 0, i = 1,... , n.

However, if M fails to have property (C), then for a givenfE C[a, b] there
mayor may not exist agE Vf(M) such that the error e = f - g equioscillates.
Our main result completely characterizes those M for which equioscillation
holds for at least one g E Vf(M).

THEOREM. Let M be a linear subspace of C[a, b] of finite dimension n.
For each fE C[a, b] there exists at least one g E Vf(M) such that the error
e = f - g equioscillates if and only if M has the Weak Chebychev property:

Each gEM has at most n - 1 changes of sign;

i.e., there do not exist points a ~ Xl < '" < Xn+l ~ b

such that g(Xi) g(Xi+l) < 0, i = 1,... , n. (WC)

The proof of this theorem as well as a corollary are given in Section 2.
We note that if M has property (C) then it also has property (WC), but not
conversely in general. Alternate formulations of (C) and (WC) are given in
Section 2. Examples and concluding remarks appear in Section 3.

2. ON CHEBYSHEV AND WEAK CHEBYSHEV SUBSPACES

It is well known and easily verified that property (C) is equivalent to each
of the following two.

If CPI ,..., CPn is a basis of M then

a ~ tl < ... < tn ~ b, a ~ SI < ... < Sn ~ b imply (C-I)

det[CPi(ti)] det[CPi(Si)] > o.
Given a = Xo < Xl < ... < Xn- I < Xn = b

there exists agE M with g(a), g(b) "* 0 such that (C-2)

(_I)i+I g(x) > 0, Xi-I < X < Xi, i = 1,... , n.

To get analogous reformulations of property (WC) we simply replace some
strict inequalities by loose ones. Thus, we propose to show that property
(WC) is equivalent to each of the following two.

If CPI ,..., CPn is a basis of M then

a ~ tl < ... < tn ~ b, a ~ SI < ... < Sn ~ b imply (WC-I)

det[CPi(ti)] det[CPi(Si)] )0 O.
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Given a = Xo < Xl < ... < X n- l < Xn = b

there exist agE M, g "* 0, such that

(_I)i+l g(x) ~ 0, Xi-l < X < Xi' i = 1,... , n.

(WC-2)

The equivalence of (WC-I) (WC-2) and (WC) can be exhibited in a
straightforward manner. However, the proofs can be considerably simplified
by the following Lemma which is also used in the proof of the Theorem.

LEMMA. Suppose that M satisfies property (WC-I) and that epl ,... , epn is a
basis/or M. For each a > °and i = 1,... , n define the/unction !fit by

!fit(t) = I/a V27T repi(X) e-I /2[(t-"'l/"j2 dx,
a

a :::;; t :::;; b.

Then/or each a the subspace M" spannedby !fii", i = 1,... , n, has property (C-I).
Moreover on any subinterval [a', b'], a < a' < b' < b, !fii" -+ epi, uniformly,
as a -+ O,/or i = 1,... , n.

The proof of the first part of the Lemma can be found in Karlin and
Studden ([1], page 15), and the second part is readily verified. We now prove
the equivalence of properties (WC), (WC-I) and (WC-2).

(WC-I) ~ (WC). Suppose M has property (WC-I) and suppose there
exists agE M which changes sign more than n - 1 times. Then by the
Lemma we can choose a > °so as to obtain an hEM which is sufficiently
close to g to have at least n zeroes. Since M has property (C-I) this is a
contradiction.

(WC-l) ~. (WC-2). Let a = Xo < Xl < ... Xn- l < Xn = b be given. If
M has property (WC-l) then for each a > °we let M" be as in the Lemma.
Since M" has property (C-2) we may choose g" E M" such that II g" II = 1
and (_I)i+1 g,,(x) > 0, Xi-l < X < Xi , i = 1,... , n. It is readily verified that
g" -+ gEM as a -+ °(II g II = 1) and that (_I)i+l g(x) ~ 0, Xi-l < X < Xi'
i = 1,2,... , n.

(WC-2) ~ (WC-I). Let epl ,..., epn be a basis for M. Let a < Sl < ...
< Sn < b be points such that det[epi(sj)] "* 0. Define in M (uniquely) the
functions Uj, j = 1,... , n, by Uj(Si) = (_I)i+l Oij, i = 1,... , n. Then UI ,... , Un
also form a basis for M. Given k, 1 :::;; k :::;; n, let Xo = a, Xi = Si ,
i = 1,... , k - 1, Xi = Si+1, i = k, ..., n - 1, and Xn = b. Since M has
property (WC-2) there exists a function Vk , Vk "* 0, such that (-1 )i+IVk(x)~o,

Xi-I:::;; X :::;; Xi , i = 1,... , n. Since Vk may be represented as L AiUi it is readily
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seen that Vk = Akuk for some Ak > O. Furthermore, Uk may be represented as

c?l(X) c?n(x)
c?l(Sl) c?iSl)

1
c?bk-l) c?iSk-l) (1)

Uk(X) = det[c?i(Sj»)
c?l(Sk+1) c?n(Sk+1)

c?l(Sn) c?n(sn)

Now let a ~ tl < ... < tn ~ b be points such that det(c?i(t j» *- O. Suppose,
k is such that Sk ¢ {tl ,... , tn}. Since Uk *- 0 and det[c?i(t j)] *- 0, there exists
a tm such that uitm) *- O. It follows from formula (1) that tm ¢ {si}f=1Ii# .
Let {ri}7=1 = {si}f=lli# U {tm}, so that ri < ri+l , i = I,... , n - 1. Then it
follows from formula (1) and from the relation Uk = (1/Ak) Vk that

By a repeated application of this argument we find

which clearly completes the proof.

(We) => (WC-I). Let c?b ... ,c?n be a basis for M. Let a < Sl < ... < Sn < b
be points such that det[c?i(sj)] *- O. Define (uniquely) the functions Uj E M,
j = 1,... , n, by uisi) = (_I)i+l Oij, i = 1, , n. For fixed k, let Xo = a,
Xi = Si, i = 1,... , k - 1, Xi = Si+1, i = k, , n - 1, and Xn = b. We now
show that Uk has the property: (__ I)i+l Uk(X) ~ 0, Xi-l ~ X ~ Xi' i = 1,... , n.
Otherwise, there exists an ioand points Y, z such that Xi -1 < Y < z < Xi ando 0

such thatuk(Y) Uk(Z) < O. Leth = Li<k Ui - Lk<i Ui' Thenh(xi) = (_I)i+l
i = 1, , n - 1. Consider the function gA = Uk + Ah. ThengA(xi) = A(-I)i+l

i = 1, , n - 1, gly) = Uk(Y) + M(y), and gA(Z) = Uk(Z) + Ah(z). Thus,
it is readily seen that for sufficiently small Aof appropriate sign, the function
gA changes sign n + 1 times on the set {Xl"'" Xio-l , Y, Z, Xio,..., xn- l}·
This contradicts our assumption that M has property (We); hence, Uk'
k = 1,2,... , n, has the desired properties. By virtue of this we can proceed
exactly as in the Proof of (WC-2) => (WC-I) above, to show that if
a ~ tl < ... < tn ~ b is any set of points such that det[cp;(tj )] *- 0, then

det[c?i(Sj)] det[rMtj)] > O.

This proves that M has property (WC-I). This concludes the proof of the
equivalence of properties (We), (WC-I) and (WC-2).
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Proof of the Theorem. We first show that if M has property (WC) then
for each fE C[a, b] there exists at least one g E Vf(M) such that the error
e = f - g equioscillates. Let 1>1 ,... , 1>" be a basis for M, and for each a > 0
let Mo = span{!/J1o, ••• , ifl"o} be as in the Lemma. For each integer k ~ 3/(b - a)
denote by I k the interval [a + 11k, b - 11k], and define the seminorm II' Ilk
on C[a, b]

II h Ilk = max{1 h(x)I : x Elk}'

Let f be an arbitrary element of C[a, b] which does not belong to M.
For each a > 0 let gok be the element of Mo satisfying

for all h E M a • (2)

The uniqueness of gok follows from the fact that the restriction of Mo to Ik
also has property (C). This, furthermore, implies that the error eok = f - gok
equioscillates on I k , i.e., there exist points

a + 11k :(; X~k < ... < X~~1 :(; b - 11k

such that
i = 1,... , n + 1,

and
i = 1,..., n. (3)

Here we have assumed thatf¢ Mo. For sufficiently small a and sufficiently
large k this follows from the fact thatfdoes not belong to M.

We represent gok as Lf=1 Xrifl{. From (2), II gok Ilk :(; 211fk Ilk for every
a > O. Hence, choosing k so large that the 1>i are linearly independent
on I k one has that the coefficients Ajk are uniformly bounded in a and in i.
By virtue of this we may choose a sequence av , av -+ 0, and numbers
Al, ... , A"k so that Ajvk -+ Aik as v -+ CX), i = 1,... , n. Since ifl{ -+ 1>i ,uniformly
on I k , as a -+ 0, it follows that govk -+ gk = L~1 Al1>i , uniformly on I k .
We may choose a subsequence of av , again denoted by av , and numbers
X1k,... , X~+1 so that xjvk

-+ xl as v -+ CX), i = 1,... , n + 1. If we choose k so
large thatfis linearly independent of 1>1"'" 1>" on I k then it follows from the
uniform convergence of the go k and from (3) that if ek = f - gk then

v

I ek(x/)! = II ek Ilk' i = 1,..., n + 1, ek(x/) ek(x:+1) < 0, i = 1,..., n.

(4)

In particular, (4) implies that xl < X~+1 , i = 1,... , n. Since M has property
(We) it also follows from (4) that

for all hEM. (5)
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For if Ilf - h Ilk < Ilf - gk Ilk for some hEM then by virtue of (4):

{[h(x/) - gk(x/)][h(xf+l) - gk(X~l)]} < 0, for i = 1,..., n,
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which contradicts the fact that M has property (WC). From (5), for fixed ko ,
we have

for all k ~ ko • (6)

Hence, if ko is chosen so large that CPl ,..., CPn are linearly independent on Iko
it follows from (6) that the coefficients >'l of glc = L7-l Alcpi are uniformly
bounded in i and in k. Hence, we can choose a subsequence Sk of I, 2, 3,...
and numbers Al , ... , An so that Atk -- Ai, as k -- 00, i = I, ... , n, and

n

gSk -- g = L AiCPi ,
i=l

as k -- 00, uniformly on [a, b]. (7)

We can choose a further subsequence, again denoted by Sk, and points
Xl"'" Xn+l so that xtk -- Xi , as k -- 00, i = 1,... , n + 1. Letting e = f - g,
(4) and (7) imply

I e(Xi) I = II ell, i = 1,..., n + 1, i = 1,... , n (8)

The fact that g E Vf(M) follows from (5) and (7). Also, as above, it follows
from (8) and property (WC) of M. Moreover, by (8), e = f - g has the
desired equioscillation property and the sufficiency is proven.

Finally, we show that if M has the property that for eachfE C[a, b] there
exists at least one g E Vf(M) such that the error e = f - g equioscillates
then M has property (WC). Given arbitrary points

a = Xo < Xl < .. , < X n - l < X n = b

we now show that there exists agE M such that g =t: 0 and such that
(_l)i-t-l g(x) ~ 0, Xi-l < X < Xi' i = 1,... , n. For each € > 0 sufficiently
small define the functionf.. by

1

0, X=Xi-l' Xi'
f..(x) = (_1)iH, Xi-l + € ~ X ~ Xi - €,

linear elsewhere on [Xi-l , Xi]'

i = 1,2,... , n.

By assumption, for each € there exists a g. E Vf (M) so that e. = f.. - g.
equioscillates. In particular this means that Ill. - g.11 ~ 11f.. - °II = 1.
Moreover g. =t: 0 becausef.. - 0 = f.. does not equioscillate since it changes
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sign only n - 1 times. Now II /. - g. II < II /. II = 1 implies that
(_1)i+1 g.(x) ;? °for Xi-l + E < X < Xi - E, i = 1,..., n. Since II g.11 *- °
the functions h. = g./II g.11 have the same property. Choosing a convergent
subsequence h. such that h. ---.. g as II ---.. 00 it is easily observed that g has the

v v
desired properties: (_l)i+1 g(x) ;? 0, Xi-l < X < Xi , i = 1,... , n, and g ~ 0.
This concludes the proof.

COROLLARY. Let M be a finite dimensional linear subspace of C[a, b].
For each f E C[a, b] there exists agE Vf(M) such that the error e = f - g
equioscillates, ifand only if, this is true for each f having the additional property
that Vf(M) is a singleton.

Proof. In one direction this is trivial. In the other direction it is sufficient to
show that M has property (WC). Let a = Xo < Xl < '" < Xn- l < Xn = b
be arbitrary points. Let/. be as in the proof of the Theorem. Either Vf (M) is•
not a singleton and there exists an h. E Vf (M) such that h. ~ 0 or
Vf (M) = {g.} and /. - g. equioscillates. Moreover, it follows that
(_'1)i+1 g.(x) > 0, Xi-l + E < X < Xi - E, i = 1,..., nand (-l)i+lh.(x) ;? 0,
Xi-l + E < X < Xi - E, i = 1,... , n. In either case, we proceed as in the
proof of the Theorem to show that there exists agE M such that g*-O and
(_I)i+1 g(x) ;? 0, Xi-l < X < Xi' i = 1,... , n. This concludes the proof.

3. EXAMPLES AND COMMENTS

We begin with a simple example of a subspace M which has property (WC).

Piecewise linear functions. Let [a, b] be a finite interval. Choose knots
a = eo < el < ... < en-l < en = b. Let M be the linear subspace of
continuous, piecewise linear functions with (possible) corners at the knots,
i.e., let M = {g : g E C[a, b], g linear on [ei-l , ed, i = 1,... , n}. Then M has
property (WC), for the dimension of M is n + 1, and if there exists a
gEM and points a < Xl < ... < xn+2 < b such that g(Xi) g(Xi+I) < 0,
i = 1, , n + 1, then there exist points Yt ,,,., Yn+1 such that Xi < Yi < Xi+1,
i = 1, , n + 1, and such that g'(Yi) g'(Yi+I) < 0, i = 1,... , n. It follows
that there exist io and 1'0 such that Yi ,Yi +1 E [ej ,gj +1], which contradictso 0 0 0

the fact that g is linear on [gj , gj +1]'o 0

This example can be generalized as follows.

Spline polynomials. For any positive integer k we define the function (X)+k

by

X;? 0,
X < O.
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Choose knots -1 < gl < ... < gn < 1, and let k be an arbitrary positive
integer. It has been shown by Karlin and Studden [1], page 18, that the
linear subspace M spanned by

has property (WC-I) on the interval [-1, +1].

Construction of best approximation. If M has property (C) then for each
fE C[a, b] the well known Remez algorithm can be used (at least in theory)
to construct a sequence {gm} in M which converges uniformly to g, where
{g} = VtCM). This is based on the equiosciIIation property of e = f - g
and on the fact that V,(M) is a singleton. No general algorithm exists for
the case where M has property (WC). It is hoped that by virtue of our
theorem above something analogous to the Remez algorithm can be
developed. In this regard we note that if M has property (WC) and if we have
found agE M such that e = f - g equioscillates then g E Vt(M). (This was
verified and used in the proof of the Theorem.)

Geometric considerations. If M is as arbitrary finite dimensional linear
subspace of C[a, b] then for each f the set VtCM) is convex and compact.
It follows directly from a result of Brosowski ([2], Section 4, Satz 6), that
if g belongs to the relative interior of VtCM) and if e = f - g equioscillates
then e = f - h equiosciIIates for every h E Vt(M). Hence, in general we
expect to find those g for which e = f - g equiosciIIates on the boundary
of Vt(M). It can also be shown that if M has property (WC) then there
exists an extreme point g of Vt(M) for which e = f - g equiosciIIates.
However, this is not true for every extreme point. Further geometric
characterizations would be interesting.
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